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Abstract
The hyperparameter in image restoration by the Bayes formula is an important
quantity. This communication shows a physical method for the estimation
of the hyperparameter without approximation. For artificially generated
images by prior probability, the hyperparameter is computed accurately. For
practical images, accuracy of the estimated hyperparameter depends on the
magnetization and energy of the images. We discuss the validity of prior
probability for an original image.

PACS numbers: 02.50.−r, 05.50.+q, 07.05.Pj, 95.75.Mn

Mathematical methods in statistical physics have been applied to information processing
problems [1]. A probabilistic model has been used to construct the problems. An analogy
between a probabilistic model and a formula of statistical physics supports the validity
for applicability. One of the main topics which deals with statistical-physics approaches
to information processing problems is image restoration [2]. An image on a computer is
represented by a sequence of bits. When a digital image is transferred through a channel, it is
corrupted by noise. The purpose of image restoration is to restore an original image from a
degraded image.

The problem is to infer an original image from a degraded image. The Bayes formula
plays an important role in the image restoration by a probabilistic method [3]. The Bayes
formula is expressed by (posterior prob.) ∝ (conditional prob.) ∗ (prior prob.). The conditional
probability and the prior probability contain parameters (hyperparameters). In order to obtain
a properly restored image by the posterior probability of the Bayes formula, it is necessary
to use appropriate values of the hyperparameters [4]. However, one usually has only a
degraded image and no knowledge of a degradation process characterized by the conditional
probability and an original image characterized by the prior probability. For the sake of
simplicity, we assume that the conditional probability is given by a memoryless symmetric
channel. We have to estimate the hyperparameters from a degraded image [5–9]. So far the
hyperparameters are determined by maximizing a marginal likelihood function (MML) [10].
However, a computational task for the summation in marginalization is exponentially huge.
One has to resort to simulation or approximate methods (mean-field or Bethe approximation) to
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implement the method. In the present communication, we demonstrate a physical method for
obtaining the hyperparameters without any approximations. Morita and Tanaka attempted to
estimate the hyperparameters on an additional assumption about images [11]. By comparison
with their method, our method is simple and natural.

We consider a binary (black and white) image. A black pixel represents 0 as bit expression
or down spin in the Ising model. A white pixel represents 1 as bit expression or up spin in the
Ising model. When an original image is corrupted by noise, one receives a degraded image with
the state of a pixel inverted from an original value with probability p. In a binary symmetric
channel a change from the state of each pixel to another state occurs with the same probability
p independently of the other pixels. The probability p is one of the hyperparameters. We
examine a change of the number of black or white pixels between an original image and a
degraded image:{

N ′
1 = (1 − p)N1 + pN0

N ′
0 = pN1 + (1 − p)N0,

(1)

where N1 and N0 are the number of white and black pixels in an original image, respectively.
The prime means the number of pixels in a degraded image. Solving the eigenvalue problem,
we obtain the following relations:

N ′
1 + N ′

0 = N1 + N0, (2)

N ′
1 − N ′

0 = (1 − 2p)(N1 − N0). (3)

Equation (2) shows conservation of the total number of pixels between an original image and
a degraded image. From the point of view of Ising spin, Equation (3) means a change of
magnetization, which is defined by the difference between the number of sites with up spin
and that with down spin. Equation (3) can be expressed in the following way,

M ′ = (1 − 2p)M, (4)

where M and M ′ are the magnetization of an original image and a degraded image, respectively.
We consider a change of the number of neighboring-pixel pairs between an original image

and a degraded image:⎧⎪⎨
⎪⎩

N ′
11 = (1 − p)2N11 + p(1 − p)N10 + p2N00

N ′
10 = 2p(1 − p)N11 + [(1 − p)2 + p2]N10 + 2p(1 − p)N00

N ′
00 = p2N11 + p(1 − p)N10 + (1 − p)2N00,

(5)

where N11 is the number of neighboring-pixel pairs with 1 as a bit on both ends. Similarly
N10 and N00 are defined. The prime means those in a degraded image. Solving the eigenvalue
problem, we obtain the following relations,

N ′
11 + N ′

10 + N ′
00 = N11 + N10 + N00, (6)

N ′
11 − N ′

00 = (1 − 2p)(N11 − N00), (7)

N ′
11 − N ′

10 + N ′
00 = (1 − 2p)2(N11 − N10 + N00). (8)

The first expression (6) shows conservation of the total number of neighboring pairs between
an original image and a degraded image. The formula (N11 −N10 +N00) in the third expression
(8) is equal to the minus energy of the Ising model, −H = ∑

〈i,j〉 σiσj . Equation (8) can be
expressed in the following way,

E′ = (1 − 2p)2E, (9)
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Figure 1. Energy per site as a function of β for several system sizes, 64 × 64, 128 × 128, 256 ×
256, 512×512 and 1024×1024. The exact energy of the Onsager solution accords with the curve.

where E and E′ are the energy of an original image and a degraded image respectively.
Equations (4) and (9) are key concepts in the present paper. Eliminating the quantity (1−2p),
we can derive the relation

(M ′)2

E′ = (M)2

E
. (10)

The quantity (M)2/E is constant between an original image and a degraded image. Taking
the derivation process into consideration, we conclude that equation (10) bears no relation to
the Bayes formula as well as the prior probability. The left-hand side of (10) can be calculated
from a degraded image. If we assume that the prior probability is the Gibbs distribution of the
Ising model, we can obtain β (inverse temperature) dependence of the magnetization and the
energy. The quantity β characterizes the prior probability and is one of the hyperparameters.
The value of β can be evaluated from relation (10) by adjusting β to equalize both sides of
(10). The probability p is derived through relation (4) by

p = 1

2

[
1 − M ′

M(β)

]
. (11)

In order to investigate β dependence of the magnetization and the energy of the Ising
model, we perform Monte Carlo simulation. Figures 1 and 2 show results of the Monte Carlo
simulation for the two-dimensional Ising model. Figure 1 indicates β dependence of the
energy for several system sizes. The energy curve is independent of the system size. Although
the exact solution of the Ising model is derived on an infinite two-dimensional square lattice,
we use the exact solution for E(β). Figure 2 indicates β dependence of the magnetization
for several system sizes. The magnetization as a function of β depends on the system size
below the critical value of β. In order to determine the β dependence of the magnetization,
we use a finite-size scaling relation. The inset in figure 2 shows a finite-size scaling function
of the magnetization, scaled temperature versus scaled magnetization. We derive the scaling
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Figure 2. Magnetization per site as a function of β for several system sizes, which are the same
as figure 1. The solid curve indicates the exact magnetization of the Onsager solution. The inset
shows a finite-size scaling function of the magnetization. The scaling function uses exact scaling
parameters.

Table 1. Average of estimated hyperparameters for 50 original images which are generated by
Monte Carlo simulation on the Gibbs distribution of the Ising model.

Prior Conditional MML with MML with
prob. prob. mean-field approx. Bethe approx. Our method

β = 0.43 p = 0.1 p = 0.026 106 p = 0.078 867 p = 0.108 118
β = 0.305 503 β = 0.384 960 β = 0.404 151

β = 0.43 p = 0.2 p = 0.076 367 p = 0.166 563 p = 0.205 954
β = 0.288 261 β = 0.377 584 β = 0.405 708

β = 0.44 p = 0.1 p = 0.028 072 p = 0.081 310 p = 0.099 378
β = 0.314 197 β = 0.398 500 β = 0.440 023

β = 0.44 p = 0.2 p = 0.077 628 p = 0.168 992 p = 0.199 787
β = 0.292 880 β = 0.388 504 β = 0.440 021

function from the data of figure 2 by curve fitting. By the obtained scaling function, the
magnetization for any system size can be obtained as a function of β.

In order to examine the validity of our method, we implement our method for artificially
created images. The original images (256 × 256 pixels) are generated by Monte Carlo
simulation with the prior probability which is the Gibbs distribution of the Ising model with
β = 0.43 and β = 0.44. The choice of the above β stems from the fact that for smaller β value
than the selected values images with disordered patterns are generated and for larger β value
than the selected values almost black or white images are generated by the prior probability.
The original images are degraded by the binary symmetric noise with p = 0.1 and p = 0.2.
Table 1 shows estimated values of the hyperparameters by our method from the degraded
images. Results of MML with the mean-field approximation or the Bethe approximation are
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Figure 3. Actual binary images (256 × 256 pixels), ‘home’ (left) and ‘mandrill’ (right).

Table 2. Estimated hyperparameters for actual binary images.

Image Conditional prob. Estimated hyperparameter

Home p = 0.1 p = −0.042 946
β = 0.366 966

Home p = 0.2 p = 0.091 239
β = 0.366 677

Mandrill p = 0.1 p = 0.105 153
β = 0.436 895

Mandrill p = 0.2 p = 0.203 478
β = 0.436 792

also listed for comparison. Our method provides accurate values of the hyperparameters.
When β = 0.43, the magnetization becomes a very small quantity and so it is difficult to
improve accuracy of the calculations.

We also implement our method for practical images exemplified in figure 3, ‘home’ and
‘mandrill’. The two binary images are obtained from the standard images by using threshold
processing. We produce degraded images from the original images ‘home’ and ‘mandrill’ by
the degradation process. Table 2 shows the hyperparameters evaluated by our method from the
degraded images. While the estimated hyperparameters of the image ‘mandrill’ are appropriate
values, those of the image ‘home’ are inappropriate. The inappropriate values result from the
fact that the original image ‘home’ is never generated by the Gibbs distribution of the Ising
model. In order to investigate the validity of the prior probability, we compare βM estimated
from the magnetization of the original image with βE estimated from the energy. The inverse
temperatures estimated from the magnetization and the energy of the original image ‘home’
are βM = 0.380 819 and βE = 0.500 947 respectively. The inverse temperatures estimated
from the magnetization and the energy of the original image ‘mandrill’ are βM = 0.436 714
and βE = 0.432 313 respectively. The validity of the prior probability depends on whether
βM estimated from the magnetization is close to βE estimated from the energy. In comparison
with images generated by the Gibbs distribution of the Ising model, the original image ‘home’
has large clusters of neighboring pixels having the same state.

The framework of the binary system is also applicable to restoration of q-valued images.
Each pixel takes one of the gray-levels (0, 1, 2, . . . , q − 1), where 0 and q − 1 correspond to
black and white respectively. We assume that a degradation process is given by the symmetric
channel. The degradation process changes intensity of each pixel to other intensity with
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Table 3. Estimated hyperparameters for 4-valued images (256 × 256 pixels).

Conditional prob. Artificial image (β = 1.09) Home Mandrill Lenna

p = 0.05 0.051 132 0.035 825 0.078 340 0.025 158
p = 0.1 0.100 191 0.090 005 0.121 588 0.081 249

βM 1.089 335 1.104 276 1.125 190 1.098 326
βE 1.087 304 1.135 939 1.098 612 1.150 626

probability (q − 1)p. Through derivation similar to the binary system, the conserved quantity
between an original image and a degraded image is given by

(M ′)2

qE′ − 2N
= (M)2

qE − 2N
, (12)

where N is the total number of pixels. Although the quantities E and M correspond to the
energy and the magnetization respectively, they are not naive extension of the Ising model.
Equation (12) also bears no relation to prior probability. If we set prior probability, β

dependence of E and M is determined. In the case that prior probability is the Gibbs distribution
of the Potts model [12], we have to settle β dependence of E and M by Monte Carlo simulation.
As for the β dependence of M, we use a finite-size scaling relation. The left-hand side of (12)
can be derived from a degraded image. The hyperparameter β is so adjusted for the right-hand
side of (12) to coincide with the left-hand side. After we obtain a value of β, the conditional
probability p is derived from the following relation:

p = 1

q

[
1 − M ′

M(β)

]
. (13)

We implement our method for 4-valued standard images, ‘home’, ‘mandrill’ and ‘lenna’.
Table 3 shows estimated hyperparameters from degraded images. The result for an artificially
generated image by Monte Carlo simulation with the Gibbs distribution of the Potts model is
listed for comparison. The artificial image is chosen at random. For the artificially generated
image the hyperparameter is estimated by our method satisfactorily. For the practical 4-valued
images the results of our method are not satisfactory. Our assumption that the original images
are generated by the prior probability is inappropriate for the practical images. In the case
of the practical images, estimated βM widely differs from βE . This means that the practical
images are never generated from the prior probability.

We showed the method for estimating the hyperparameters in the image restoration. The
formula bears no relation to prior probability, and so our method is applicable to other prior
probability [13]. So far the hyperparameters are estimated by maximization of a marginal
likelihood function. The summation in marginalization is an exponentially increasing task.
Instead of the summation, the mean-field approximation or the Bethe approximation has
been adopted. In our method we use the exact solution or the results of Monte Carlo
simulation in place of the summation. A digital image is represented by a finite number
of pixels. Our method takes into consideration the size of an image. The maximization
of a marginal likelihood function with the approximate methods takes no account of the
finiteness of an image size. Since our method does not rely on any approximations, we can
investigate appropriateness of the prior probability. In order to obtain proper values of the
hyperparameters, the magnetization and the energy of the original image have to be close
to those evaluated by the prior probability. The validity of the assumption for the prior
probability is assessed by the energy and the magnetization of the original image. If we find
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prior probability which generates an image, the hyperparameters are estimated by our method
accurately.
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